20 énigmes mathématiques pour les enfants
Les mathématiques sont un sujet que les enfants redoutent ou trouvent ennuyeux. Cependant, les mathématiques ne doivent pas nécessairement être ennuyeuses ou intimidantes. Cela peut être très amusant si on l'enseigne correctement. Voici 20 énigmes mathématiques pour les enfants qui les aideront à améliorer leurs aptitudes en calcul de manière intéressante et agréable.
Easy Maths Puzzles avec RĂ©ponses pour les enfants
1. Ramesh a eu 10 ans avant hier. L'année prochaine, il aura 13 ans. Comment est-ce possible?
Réponse: C’est l’un des casse-tête de mathématiques les plus amusants pour les enfants de 6 ans. À l’aide des mathématiques et d’un calendrier, ce puzzle s’explique facilement.
Pour que ce puzzle fonctionne, nous devons supposer que nous sommes aujourd'hui le 1 er janvier 2018. Cela signifie que le onzième anniversaire de Ramesh était le 31 décembre 2017. Hier, il avait 10 ans et aujourd'hui, il a 11 ans. l'année en cours, 2018, il aura 12 ans. Et donc, d'ici l'année prochaine (c'est-à -dire en 2019), il aura 13 ans.
2. Quel est le numéro suivant? 18, 21, 24, 27, 30, 33, 36, ______________
Réponse: Ici, le modèle à observer est le suivant: chaque nombre successif est supérieur de 3. La séquence sera donc: 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, etc.
3. Quel est le numéro suivant? 53, 51, 49, 47, 45, 43, _______________
Réponse: Ici, le schéma à observer est le suivant: chaque nombre successif est réduit de 2. La séquence sera donc: 53, 51, 49, 47, 45, 43, 41, 39, 37, 35, etc.
4. Hari avait 6 frères et sœurs, tous nés à 2 ans d'intervalle. Le plus jeune est Richa qui n’a que 7 ans et Hari est le plus âgé. Quel est l'âge de Hari?
Réponse: Richa, le plus jeune frère a 7 ans. Chaque frère et sœur est né à 2 ans d'intervalle et il y a sept enfants au total (Hari et ses 6 frères et sœurs). L'âge de Hari est donc: 7 + 2 + 2 + 2 + 2 + 2 + 2 = 19.
5. Ravi vivait dans un village voisin de la forêt. Un jour, il rencontra un génie. Le génie était de bonne humeur et accorda à Ravi un souhait. Ravi, pensant que c'était une blague, souhaitait 100 grammes d'or. Le génie a accepté et voici! Ravi avait un kilo d'or. Choqué et bouleversé qu'il demande si peu, Ravi demanda au génie s'il pouvait demander un autre souhait. Le génie a accepté, mais seulement à une condition. Le génie reviendrait le mois prochain à n'importe quelle date et Ravi devrait lui présenter des bagues en or. Cependant, les bagues en or devaient avoir le même poids que la date à laquelle il était arrivé. Cela signifie que si le génie venait le 20, il aurait besoin de 20 grammes d'or. Qu'est-ce que Ravi a ensuite fait?
Réponse: Ceci est une énigme mathématique difficile pour les enfants car la date est inconnue. Si Ravi décidait de fabriquer une bague en or différente chaque jour, cela deviendrait problématique. C'est parce qu'il n'a que 100 grammes d'or. Ainsi, s'il fabriquait une bague en or de 31 grammes, 30 grammes, 29 grammes et 27 grammes, il manquerait d'or. La solution consiste à faire seulement 5 anneaux de poids 1 gramme, 2 grammes, 4 grammes, 8 grammes et 16 grammes. Ceci peut être utilisé en combinaison pour atteindre le nombre 31. Par exemple:
- 24 ème jour: 16 + 8
- 13 ème jour: 8 + 4 + 1
- 7 ème jour: 4 + 2 + 1
6. Si Radha est le 50 e coureur le plus rapide et le plus lent de son école, combien d'élèves y a-t-il dans son école?
RĂ©ponse: 99 Ă©tudiants.
- 50 e calcul le plus rapide: Si vous comptez dans l'ordre Ă partir de 1, Radha vient 50.
- 50 e calcul le plus lent: Si vous comptez Ă partir de 99, Radha vaut 50.
7. Puzzles loups et agneaux: Six loups ne peuvent attraper que six agneaux en six minutes. Alors, combien de loups devront-ils attraper 60 agneaux en soixante minutes? Indice - la réponse n'est pas soixante.
Réponse: 1 loup peut attraper 1 agneau en six minutes. En 60 minutes, chaque loup peut attraper 10 agneaux. Ainsi, chaque loup peut attraper dix agneaux et en soixante minutes, six loups peuvent attraper 60 agneaux. Une autre méthode - Six loups. Comment? 6 loups peuvent attraper six agneaux en 6 minutes. Si vous le multipliez par dix, les mêmes loups peuvent attraper soixante agneaux en 60 minutes.
8. Combien de cycles? C'est un autre problème d'énoncé mathématique qui peut être résolu en utilisant la logique et l'arithmétique. Le week-end dernier, Jack est allé jouer dans le parc près de chez lui. Il a monté le nouveau vélo offert par sa grand-mère le jour de son anniversaire. Après avoir atteint le parc, Jack s'aperçut qu'il y avait 14 tricycles et vélos. S'il y avait au total 38 roues, combien de tricycles y avait-il dans le parc?
Réponse: Il y avait 10 tricycles. Il y avait 14 cycles en tout, et tous ont au moins 2 roues. Donc, 14 x 2 = 28. Maintenant, il y a 38 roues au total, ce qui signifie 38 - 28 = 10. Donc, cela signifie qu'il y a 10 cycles avec une roue supplémentaire chacun, ce qui signifie 10 tricycles.
9. La directrice construit un terrain de jeu carré pour les enfants de son école. Elle souhaitait clôturer la zone avec quatre sorties autour de la cour afin que le terrain soit accessible de tous les côtés. Si elle utilisait 27 poteaux de chaque côté de la cour de récréation, combien de poteaux seraient nécessaires en tout?
Réponse: 104 pôles. Les 4 poteaux d'angle seront communs aux deux côtés. D'où: (25 pôles x 4 côtés) + 4 pôles d'angle = 104 pôles
10. Singe et bananes: Un autre problème qu'il est amusant de résoudre pour les enfants. Supposons qu'il y ait cinq singes et que chacun prenne cinq minutes pour manger cinq bananes. Combien de minutes faut-il à 4 singes pour manger 4 bananes? Encore une fois, combien de singes mangeraient 30 bananes en 30 minutes?
RĂ©ponse: Chaque singe mange 5 bananes en 5 minutes, soit 1 banane en 1 minute. Donc, s'il y a 4 singes et 4 bananes, ils ne prendront qu'une minute. Par contre, si on mange 30 bananes en 30 minutes (c'est-Ă -dire 1 banane en 1 minute), c'est le travail d'un singe.
11. Qu'est-ce qui pèse le plus - Un kilo de pommes ou un kilo de plumes?
Réponse: Ils pèsent le même poids Chacun pèse exactement un kilo.
12. En utilisant seulement addition, comment pouvez-vous ajouter huit 8 pour obtenir le nombre 1 000?
RĂ©ponse: 888 + 88 + 8 + 8 + 8 = 1 000
13. L'âge d'un père et de son fils totalise 66 ans. L'âge du père correspond à l'âge du fils inversé. Quel âge peuvent-ils avoir?
Réponse: Il existe trois réponses différentes à cela: le père et le fils pourraient être âgés de 51 et 15 ans ou de 42 à 24 ans ou de 60 à 06 ans.
14. Un scientifique en génie a conçu une nouvelle plante qui pourrait doubler sa taille chaque jour. Il l'a fait pousser dans un étang circulaire avec une circonférence de 600 mètres. S'il la plantait dans la partie sud de l'étang et que la plante couvrait la moitié de l'étang en 28 jours, combien de jours faudrait-il pour recouvrir tout l'étang?
Réponse: 29 jours. Comme mentionné au début, la taille de l’usine double tous les jours.
15. S'il y a quatre pommes et que tu en prends trois, combien en as-tu?
RĂ©ponse: Vous avez pris les pommes et vous en avez Ă©videmment trois.
16. Combien y a-t-il de 9 entre 1 et 100?
RĂ©ponse: 20. Ils sont 9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 96, 97, 98, 9
17. Tracez une ligne. Sans le toucher, raccourcissez cette ligne.
Réponse: Tracez une ligne plus longue à côté. Cela fera paraître la première ligne plus courte.
18. Il y a 2 seaux, un seau de 5 litres et un seau de 3 litres. Remplissez le seau de 5 litres avec 4 litres d'eau en utilisant simplement ces deux seaux.
Réponse: Remplissez complètement le seau de 5 litres. Versez-le dans le seau de 3 litres jusqu'à ce qu'il soit plein. Videz le seau de 3 litres. Versez les 2 litres restants dans le seau de 3 litres. Remplissez complètement le seau de 5 litres. Finissez de remplir le seau de 3 litres. Il ne reste maintenant que 4 litres d'eau dans le seau de 5 litres.
19. Qu'est-ce que les nombres 88, 96 et 11 ont tous en commun?
RĂ©ponse: Ils ont la mĂŞme apparence Ă l'envers et Ă l'endroit.
20. Deux pères et deux fils vont à la pêche. Chacun d'eux attrape un poisson. Alors, pourquoi ne rapportent-ils que trois poissons à la maison?
Réponse: Le groupe de pêcheurs comprend un grand-père, son fils et le fils de son fils. Donc, il n'y a que trois personnes.
Les mathématiques peuvent être un sujet intimidant pour de nombreux enfants, mais la résolution de casse-têtes dissipe la peur des chiffres et les aide à développer un engouement pour le calcul. Il renforce les compétences de résolution de problèmes chez votre tout-petit et l’aide à mieux raisonner dans toutes sortes de situations. Abonnez-vous à la boîte des activités pour enfants et faites des numéros leur nouvel ami.